
GSoC 2023:

NetBSD Linux System Call Emulation:

“A Tale of Two Binaries”

Theodore Preduta

29 March 2023

1 Synopsis
NetBSD’s Linux system call (syscall) emulation provides near seamless ability

to run Linux binaries, but suffers from a predictability problem. That is, given

an arbitrary Linux binary, it is extremely difficult, if not impossible, to predict

whether or not that binary will run under syscall emulation, leading fairly

quickly to frustration. By porting a commonly used testing facility, and using

it as the benchmark rather than individual programs, we can take a more

systematic approach to implementing new and fixing old system calls. Using

this technique, this project aims to add support for a whole new class of Linux

binaries while decreasing the frustration that comes with the predictability

issue.

2 Contents
1 Synopsis . 1

2 Contents . 1

3 Project Description . 2

4 Deliverables . 2

5 Schedule . 3

6 Implementation Plans . 4

7 Biography . 5

8 Personal Information . 6

9 Tables . 7

10 References . 10

1

3 Project Description
The main issue with the current NetBSD Linux syscall compatibility is that its

usefulness remains a constant mystery. “Will it work with X?” is not a question

that can be easily answered [18]. And because of this the subsystem as a whole

can be frustrating to work with. One of the driving causes behind this is that

functionality has been written, in general, with specific applications in mind.

To help reduce this frustration, instead of taking the approach of find a

broken application, fix it, repeat, this project will first introduce a common

compatibility target to reach for, and thenwill take a decently sized step towards

achieving it.

Enter the Linux Test Project (LTP) [7], which will act as the compatibility

target. The theory here being that, since the LTP is currently used to test Linux

itself [2], if its tests pass under NetBSD syscall emulation, any program that

uses those syscalls should also work on NetBSD. And to cement this goal, and

to allow other to use it more easily, the LTP will be packaged.

The issue with only looking at the LTP is that there are still hundreds of

syscalls that have yet to be implemented, so the scope will still have to be

limited somewhat arbitrarily. A target set of binaries is still used, but only to

limit which syscalls are considered ‘in’ and ‘out’ of scope.

While in general it is hard to tell given a Linux binary whether it will work

on NetBSD, there is an entire programming language’s worth of binaries that

are guaranteed to immediately fail: Go Linux binaries. As a core part of its

architecture, Go’s netpoller, which handles most IO, makes extensive use of the

epoll set system calls on Linux [1], which the current compatibility code leaves

unimplemented. Two Go programs I would personally like to see work1 are

Nebula [8] and Syncthing [20]. And so that will be where the line is drawn on

syscalls to be implemented this summer.

4 Deliverables
First Evaluation Deliverables

• The LTP (and its possible dependencies) have been packaged.

• The getrandom, waitid, memfd_create, and the epoll family of system

calls pass thir LTP system call tests.

• (Optional) Nebula functions, ie. nebula and nebula-cert Linux binaries

can be used to setup an internal network, and then access some service

behind that network.

1Yes, I know, those programs can actually be built natively under NetBSD.

2

Second (Final) Evaluation Deliverables
• The readahead, newfstatat, statx, close_range, ioprio_set, and inotify fam-

ily of system calls pass the relevant LTP system call tests.

• (Optional) The Syncthing functions, ie. syncthing Linux binary can be

used to sync a folder.

Bonus Deliverables (Time Permitting)
• Implement translation between the mount/umount2 Linux syscalls and

the mount/unmount NetBSD syscalls (respectively).

5 Schedule
• Community Bonding Period: May 4 - 28

– Set up a “better” build environment.

– Sanity check the results from section 9 (the tables).

– Fix any low hanging fruit (eg. wrong errno).

• Week 1: May 29 - June 4

– Implement the getrandom and waitid syscalls.

– Start packaging LTP.

• Week 2-3: June 5 - June 18

– Implement for the epoll family of system calls (or adapt FreeBSD’s

implementation).

– At this point the Nebula binary should run.

– Continue packaging LTP.

• Week 4-5: June 19 - July 2

– Implement the memfd_create syscall.

– Finish packaging LTP2.

• Week 6-8: July 3 - July 23

– Implement the inotify family of system calls.

• Week 9-10: July 24 - August 6

– Implement the readahead, newfstatat and statx syscalls.

• Week 11-12: August 7 - August 20

– Implement the close_range and ioprio_set syscalls.

2While packaging LTP is not actually expected to take 4-6 weeks of work, it is also not the

primary focus of this project.

3

6 Implementation Plans
Linux Test Project
As previously stated, the goal for the integration of the Linux Test Project (LTP)

will be to package it. Any further requires a significant amount of labour that,

on its own is enough work to be considered a separate project idea [21].

There are two possibilities for how this could be done, each with some

benefits and drawbacks.

The first option involves creating four new pkgsrc packages, they are for

the LTP [7], and its dependencies: gcc [14], make [12], and the kernel headers

(provided on OpenSUSE by the kernel-source package) [13]. The creation of

those last three should be very similar to that of suse15_base. That is to say,

download the RPM locally and directly extract the LTP from it. With these

packages it should be possible to directly build the LTP under the NetBSD

emulation. The disadvantage here is the amount of packages needed, and the

ending of the de facto current policy of only providing core emulation libraries

in pkgsrc.

The second option is to package it directly as an RPM, on OpenSUSE, and

create a new NetBSD package almost identical to that of suse15_base. The

only real advantage to this approach is that it involves the creation of a single

package (and an RPM). Otherwise, the downside of this approach is that it

involves integrating both the Linux and NetBSD pkgsrc infrastructure, which

at this point only supports RHEL 7 [5, 17]. And while building on RHEL 7 is

possible, it will likely result in conflicts with the OpenSUSE version of glibc,

which NetBSD packages. It is for these reasons that the first approach, while

more complex, is preferred by myself.

System Calls
By limiting our scope from all Linux syscalls to those that are required for

a usual use case of Nebula and Syncthing, we end up with a tractable list

of syscalls. Those syscalls were then checked against the system call list in

linux_syscalls.c [10]. Those that are unimplemented are outlined in table 1,

and those that are were tested against the LTP, with results being in table 3.

While initially table 3 seems like it presents an impossibly large amount

of syscalls to debug in the standard 12-week period, a more manual review

of the tests show that the vast majority of the failing tests fall into one of two

categories. The first being wrong errno, and the second being unable to run

because of a dependency on some other (usuallymount) syscall needed to setup

the test.

Table 1, however, summarizes that majority of the work that must be done.

The simplest system calls of the bunch are close_range, getrandom, newf-

statat, readahead, statx, and waitid, which have very direct NetBSD syscall

counterparts. The implementation of these syscalls would be nearly identical

4

to that of open [9], that is, translate the flags directly (if there are any), and call

the equivalent NetBSD system call.

Next, the epoll and inotify series of syscalls can each be implemented with

kevent and kqueue. Roughly, the epoll system calls need to be translated

into kevent structs that are using the EVFILT_READ, EVFILT_WRITE, and

EVFILT_EMPTY filters. It should be noted that FreeBSD uses this strategy in

their Linuxulator [3], some of which can be adapted to NetBSD. Regarding

the inotify syscalls, they can be roughly translated into kevent structs making

use of the EVFILT_VNODE filter which has its fflags mappings outlined in

table 2. The one item that stands out in table 2, is that of IN_CREATE can be

approximated by watching the directory of the provided path, which is why

it maps to NOTE_WRITE. Unfortunately, unlike epoll, FreeBSD’s Linuxulator

does not currently implement the inotify syscalls. But there is a userspace

inotify library that makes use of kevent and kqueue [6], but a cursory read

through suggests that this code would not be easily adaptable.

For memfd_create, the natural choice would be shm_open, but, unlike

FreeBSD’s implementation, NetBSD’s implementation does not have a flag to

allow for anonymous shared objects (SHM_ANON on FreeBSD) [4]. To avoid

name conflicts, rather than just use it directly, it is better to mount another

tmpfs, perhaps at /dev/memfd, and call open on a file located there (which is

essentially what NetBSD’s shm_open does anyways [11]). This is done so that

this syscall would have its own ‘namespace’, controlled by the emulation code,

thereby emulating anonymous files.

Finally ioprio_set, which modifies the scheduling of IO, NetBSD does not

seem have any such functionality. However, if the goal is just to get the software

to function, the nature of this system call is that it could be implemented as a

no-op. So this one is left to the very end in the hopes by then I have enough

knowledge to come up with a better idea.

7 Biography
I am a second year student studying computer science at the University of

Toronto who is particularly interested in systems-level programming. In terms

of technological experience, I am quite comfortable with C, having used it

regularly for coursework and competitive programming3 over the last 5ish

years, the one caveat with this is that all the C code I’ve written is in userland,

and I expect the kernel to be somewhat different. For version control I use

Git/Fossil/SVN on a daily basis for schoolwork, and personal projects [16].

Part of this proposal involves creating novel pkgsrc packages, and, while

I do not have experience with the pkgsrc system in particular, I have had to

package some piece of software for every Linux distribution I’ve had to use.

This includes Debian, RHEL/Fedora, and Gentoo [15].

Finally, as part of the preparation of this document, I’ve spent some time

getting to know NetBSD. Most of it is what would be expected for learning a

3So I don’t have permission to release any of it, unfortunately.

5

new system: installing it in a virtual machine, installing packages, building a

kernel and reading man pages. Most notably however, I spent a good chunk of

time getting the LTP somewhat functional on NetBSD [19].

8 Personal Information
Name Theodore Preduta

Preferred Name Theo / Theodore

Email Address theo@pta.gg

Website www.pta.gg

Personal Projects vcs.pta.gg / github.com/6167656e74323431

Timezone EDT / UTC-4h

6

mailto:theo@pta.gg
https://www.pta.gg
https://vcs.pta.gg/
https://github.com/6167656e74323431

9 Tables

Linux Syscall NetBSD Syscall(s)
close_range close

epoll_create1

epoll_ctl

epoll_pwait

epoll_wait

kevent

kqueue

getrandom getrandom

inotify_add_watch

inotify_init1

inotify_rm_watch

kevent

kqueue

ioprio_set

memfd_create open

newfstatat fstatat

readahead posix_fadvise

statx stat

waitid waitid

Table 1: Unimplemented Linux syscalls and possible NetBSD

translations.

inotify kqueue EVFILT_VNODE
IN_ACCESS watch for everything
IN_ATTRIB NOTE_ATTRIB

IN_CLOSE_WRITE NOTE_CLOSE_WRITE

IN_CLOSE_NOWRITE NOTE_CLOSE

IN_CREATE NOTE_WRITE

IN_DELETE NOTE_DELETE

IN_DELETE_SELF NOTE_DELETE

IN_MODIFY NOTE_WRITE

IN_MOVE_SELF NOTE_RENAME

IN_MOVED_FROM NOTE_RENAME

IN_MOVED_TO NOTE_RENAME

IN_OPEN NOTE_OPEN

Table 2: Mapping between Linux’s inotify’s watch mask and

NetBSD’ kqueue’s EVFILT_VNODE fflags.

7

Linux Syscall Failing LTP Test(s)
access access04

bind bind01 bind04 bind05 bind06

brk brk01

clock_nanosleep

clock_nanosleep01 clock_nanosleep02

clock_nanosleep03

clone clone08 clone09

connect connect01 connect02

execve execve06

fallocate fallocate04 fallocate05 fallocate06

fcntl

fcntl12 fcntl12_64 fcntl13 fcntl13_64 fcntl18 fcntl18_64

fcntl23 fcntl23_64 fcntl30 fcntl30_64 fcntl31 fcntl31_64

fcntl33 fcntl33_64 fcntl35 fcntl35_64 fcntl37 fcntl37_64

fcntl38 fcntl38_64 fcntl39 fcntl39_64

fsync fsync01 fsync03 fsync04

futex

futex_cmp_requeue02 futex_wait03 futex_wait05

futex_wait_bitset01

getpeername getpeername01

getpgid getpgid02

getpid getpid01

getppid getppid01

getsockopt getsockopt01 getsockopt02

getresgid getresgid02 getresuid02

getrlimit getrlimit01 getrlimit03

getuid getuid03

ioctl ioctl04 ioctl05 ioctl06 ioctl07

kill kill03 kill11 kill13

link link01

madvise madvise01 madvise02 madvise03 madvise06

mincore mincore01 mincore02 mincore04

mkdir mkdir02 mkdir03 mkdir09

mkdirat mkdirat02

mmap mmap12 mmap13 mmap14 mmap15 mmap18

mprotect mprotect01

munmap munmap03

nanosleep nanosleep01 nanosleep04

openat openat02 openat04

pipe2 pipe2_01 pipe2_04

poll poll02

readlink readlink03

readlinkat readlinkat02

renameat renameat01

rmdir rmdir02 rmdir03

8

rt_sigprocmask rt_sigprocmask01

sendmsg sendmsg01 sendmsg03

sendto sendto01 sendto03

setpgid setpgid02

setrlimit setrlimit03

setsockopt

setsockopt01 setsockopt02 setsockopt04 setsockopt05

setsockopt06 setsockopt07 setsockopt08 setsockopt09

sigaltstack sigaltstack02

socket socket01

socketpair socketpair01

sockioctl sockioctl01

statfs statfs01 statfs01_64

statvfs statvfs01

symlink symlink01

symlinkat symlinkat01

sysinfo sysinfo03

tgkill tgkill02 tgkill03

tkill tkill02

unlinkat unlinkat01

Table 3: Linux syscalls with failing LTP tests.

9

10 References
[1] The Go netpoller. 2013. url: https://morsmachine.dk/netpoller.

[2] Chun Cui. How we use Linux Test Project to test and improve Linux. 2021.
url: https://www.redhat.com/sysadmin/linux-test-project.

[3] FreeBSD - linux_event.c. url: https://svnweb.freebsd.org/base/head/
sys/compat/linux/linux_event.c?revision=365080&view=markup.

[4] FreeBSD - shm_open(2). url: https://man.freebsd.org/cgi/man.cgi?
query=shm_open&apropos=0&sektion=0&manpath=FreeBSD+13.1-
RELEASE+and+Ports&arch=default&format=html.

[5] Install on Linux. url: https://pkgsrc.smartos.org/install- on-
linux/.

[6] libinotify-kqueue. url:https://github.com/libinotify-kqueue/libinotify-
kqueue.

[7] LTP - Linux Test Project. url: https://linux-test-project.github.io/.

[8] Nebula. url: https://github.com/slackhq/nebula.

[9] NetBSD - linux_file.c. url: http://cvsweb.netbsd.org/bsdweb.cgi/
src/sys/compat/linux/common/linux_file.c?rev=1.122&content-
type=text/x-cvsweb-markup&only_with_tag=MAIN.

[10] NetBSD - linux_syscalls.c. url: http://cvsweb.netbsd.org/bsdweb.cgi/
src/sys/compat/linux/arch/amd64/linux_syscalls.c?rev=1.76&
content-type=text/x-cvsweb-markup&only_with_tag=MAIN.

[11] NetBSD - shm.c. url: http://cvsweb.netbsd.org/bsdweb.cgi/src/lib/
librt/shm.c?rev=1.1.6.1&content-type=text/x-cvsweb-markup.

[12] openSUSE Software - GNU make. url: https://software.opensuse.org/
package/make.

[13] openSUSE Software - The Linux Kernel Sources. url: https://software.
opensuse.org/package/kernel-source.

[14] openSUSE Software - The system GNUCCompiler. url: https://software.
opensuse.org/package/make.

[15] PersonalGentoo repository. url:https://github.com/6167656e74323431/
turbo-octo-spoon.

[16] Personal project repository. url: https://vcs.pta.gg/.

[17] pkgsrc - install binary packages. url: https://www.pkgsrc.org/#index2h2.

[18] Re: [GSoC] Emulating missing Linux syscalls project questions. url: https:
//mail-index.netbsd.org/tech-kern/2023/03/13/msg028779.html.

[19] Re: [GSoC] Emulating missing Linux syscalls project questions. url: https:
//mail-index.netbsd.org/tech-kern/2023/03/19/msg028787.html.

[20] Syncthing. url: https://syncthing.net/.

10

https://morsmachine.dk/netpoller
https://www.redhat.com/sysadmin/linux-test-project
https://svnweb.freebsd.org/base/head/sys/compat/linux/linux_event.c?revision=365080&view=markup
https://svnweb.freebsd.org/base/head/sys/compat/linux/linux_event.c?revision=365080&view=markup
https://man.freebsd.org/cgi/man.cgi?query=shm_open&apropos=0&sektion=0&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://man.freebsd.org/cgi/man.cgi?query=shm_open&apropos=0&sektion=0&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://man.freebsd.org/cgi/man.cgi?query=shm_open&apropos=0&sektion=0&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://pkgsrc.smartos.org/install-on-linux/
https://pkgsrc.smartos.org/install-on-linux/
https://github.com/libinotify-kqueue/libinotify-kqueue
https://github.com/libinotify-kqueue/libinotify-kqueue
https://linux-test-project.github.io/
https://github.com/slackhq/nebula
http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/compat/linux/common/linux_file.c?rev=1.122&content-type=text/x-cvsweb-markup&only_with_tag=MAIN
http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/compat/linux/common/linux_file.c?rev=1.122&content-type=text/x-cvsweb-markup&only_with_tag=MAIN
http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/compat/linux/common/linux_file.c?rev=1.122&content-type=text/x-cvsweb-markup&only_with_tag=MAIN
http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/compat/linux/arch/amd64/linux_syscalls.c?rev=1.76&content-type=text/x-cvsweb-markup&only_with_tag=MAIN
http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/compat/linux/arch/amd64/linux_syscalls.c?rev=1.76&content-type=text/x-cvsweb-markup&only_with_tag=MAIN
http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/compat/linux/arch/amd64/linux_syscalls.c?rev=1.76&content-type=text/x-cvsweb-markup&only_with_tag=MAIN
http://cvsweb.netbsd.org/bsdweb.cgi/src/lib/librt/shm.c?rev=1.1.6.1&content-type=text/x-cvsweb-markup
http://cvsweb.netbsd.org/bsdweb.cgi/src/lib/librt/shm.c?rev=1.1.6.1&content-type=text/x-cvsweb-markup
https://software.opensuse.org/package/make
https://software.opensuse.org/package/make
https://software.opensuse.org/package/kernel-source
https://software.opensuse.org/package/kernel-source
https://software.opensuse.org/package/make
https://software.opensuse.org/package/make
https://github.com/6167656e74323431/turbo-octo-spoon
https://github.com/6167656e74323431/turbo-octo-spoon
https://vcs.pta.gg/
https://www.pkgsrc.org/#index2h2
https://mail-index.netbsd.org/tech-kern/2023/03/13/msg028779.html
https://mail-index.netbsd.org/tech-kern/2023/03/13/msg028779.html
https://mail-index.netbsd.org/tech-kern/2023/03/19/msg028787.html
https://mail-index.netbsd.org/tech-kern/2023/03/19/msg028787.html
https://syncthing.net/

[21] Test Linux emulation (350h). url: https://wiki.netbsd.org/projects/
project/linuxtest/.

11

https://wiki.netbsd.org/projects/project/linuxtest/
https://wiki.netbsd.org/projects/project/linuxtest/

	Synopsis
	Contents
	Project Description
	Deliverables
	Schedule
	Implementation Plans
	Biography
	Personal Information
	Tables
	References

